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Abstract: The classical dynamic dialysis technique for the determination of a 
protein-ligand binding isotherm has been modified by the introduction of a flow cell in 
which the dialysate on the sink side of the membrane is continuously eluted with a 
constant flow of eluting buffer and its ligand concentration measured. This new 
experimental method is termed continuous-flow dynamic dialysis (CFDD). 

A transfer function procedure for extracting the binding isotherm from the dialysis 
data is described. This is a more general technique (requiring only a verifiable 
assumption of linearity) than that previously used, in which the system was modelled 
using Fick’s first law and which relied on the establishment of quasi-steady state 
conditions across the membrane. 

The present analysis uses the Laplace transform to effect deconvolution of the impulse 
response function of the cell from the dialysis data and, using a Fourier series approach, 
directly yields numerical data representing the free ligand concentration in equilibrium 
with the protein-ligand complex. The protein-ligand binding isotherm is obtained in 
parametric form, with time as the parameter. 

Keywords: Binding isotherms; Laplace transforms; continuous flow analysis; bovine 
serum albumin; phenol red. 

Introduction 

Dialysis methods for the investigation of protein-ligand interactions have undergone 
considerable refinement since the original equilibrium dialysis method was reported [ 11. 
In order to overcome several of the disadvantages of the equilibrium method, various 
dynamic dialysis methods have evolved [2-91. These methods, in general, utilize Fick’s 
first law of diffusion to establish the concentration of unbound ligand which is in 
equilibrium with the protein-ligand complex. This involves the measurement of the 
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instantaneous rate of ligand diffusion. Consequently, the dialysis data are usually fitted 
by regression procedures to an empirical function in time, which is then differentiated 
analytically. The selection of an appropriate function to describe the dialysis process, in 
turn, depends on the prior choice of a particular binding model [lo]. 

In a previous paper [ll], a continuous-flow dynamic dialysis method was reported. 
This method uses a flow cell from which the dialysate on the sink side of the membrane is 
continuously eluted with a constant flow of eluting buffer. The ligand concentration in 
the eluate is automatically monitored to obtain values for the instantaneous rate of ligand 
diffusion from which a protein-ligand binding isotherm can be determined. This method 
offers several advantages over earlier methods. 

The analysis of the data was based on assuming that the diffusion of the ligand through 
the membrane could be described by Fick’s first law of diffusion. While this method 
appeared to give good results after establishment of a quasi-steady state across the 
membrane, the early part of the curves was not adequately described and, in addition, 
numerical differentiation of the data was required. 

The previous results are now re-analysed using a more general method, based on the 
transfer function approach, where the assumptions required in order to get the desired 
isotherms are kept to a minimum. This approach requires transformation of the 
experimental data from the time to the frequency domain. Although there are many 
advantages of this procedure, which will appear in the course of the presentation, it 
should be pointed out that certain disadvantages do accrue; specifically, discontinuities 
in the data introduce problems and truncation of infinite series is necessary. An approach 
to handling these problems will be discussed below. 

Experimental 

Apparatus 
The essential features of the dialysis cell and a schematic diagram of the apparatus are 

shown in Figs la and lb, respectively. The sample is introduced into the top chamber by 
means of a gas-tight syringe. The eluting buffer passes first through the lower 
compartment at a constant rate and then through a spectrophotometer flow-cell, where 
the ligand concentration is automatically monitored at convenient regularly-spaced time 
intervals and recorded in a computer-readable format. Temperature control is achieved 
by immersing the dialysis cell into a Colora constant temperature bath used in 
conjunction with a Colora-Tauchktihler cold finger system to provide a heat sink. 

Materials 
Bovine serum albumin (BSA) fraction V was supplied by E. Merck (Darmstadt). 

Phenol red (E = 10 800 1 mol-’ cm-’ at A = 340 nm) was recrystallized by acidifying a 
solution in sodium bicarbonate with hydrochloric acid. The semi-permeable dialysis 
membrane consisted of Visking cellulose (6.3 pm thickness, 4465A2, supplied by 
Union Carbide) which had a specified average pore diameter of 40 nm. Phenol red-BSA 
binding studies were carried out in a 0.05 M sodium phosphate buffer pH 7.0 at 25°C. 
The binding studies were carried out over a phenol red concentration range 0.15 x 10w4’ 
to 0.2 x 10m2 M. The BSA concentration was standardized to a value of 0.4 x lop4 M, 
based on A:2m = 6.6 at a wavelength of 260 nm. Eluting buffer flow rates were within the 
range 0.15 X 10m2 to 0.75 X 10e2 cm3s-l. The contents of the sink and sample 
compartments were stirred at 100 ‘pm. 
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Figure 1 
(a) The continuous-flow dynamic dialysis cell. (b) Schematic diagram of the continuous-flow dynamic dialysis 
apparatus. 

Analysis 
An overall mass balance for the system when no protein is present may be written: 

v,C1(0) - vIC,(t) = v&(f) + F J-&(T) d7 (1) 

where the symbols have the following meanings: 

cl(t) 

C2N 
F 
Vl 

::c*co, 

is the free ligand concentration in the sample compartment (compartment 

1); 
is the ligand concentration in the sink compartment (compartment 2); 
is the constant eluting buffer flow rate; 
is the sample volume; 
is the sink compartment volume; 
is the initial quantity of ligand added. 

The left-hand difference represents the quantity of ligand which has diffused from the 
sample compartment. The terms on the right represent, in sequence, ligand in the sink 
compartment, and ligand which has been transported away. 

The equivalent mass balance when.protein is present is: 

vIC,*(0) - vIC1*(r) - pC,*(t) = v2C2*(t) + F J-&*(T) d7 (2) 

where the asterisk superscript refers to a measurement in which protein is present; 
p is the number of moles of protein; 
C,*(t) is the amount of bound ligand per mole of protein. 
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It is an implicit assumption of this mass balance that there is negligible hold-up of 
ligand by the membrane. If there is a linear membrane dialysis process it may be 
described by a transfer function [12]. 

Thus: 

C*(t) = J-;Ci(t - r).Z(r)dr (3) 

where Z(r) is the impulse response of the membrane. The same relation must hold for 
the variables with the asterisk since it is assumed that the presence of the protein does 
not affect the membrane process for the free ligand: i.e. 

C,*(t) = J-&*(f - r).Z(r)dr. (4) 

In order to continue the analysis, each of these equations is Laplace transformed, 
where a tilde (-) denotes a transformed variable, a function of S, as defined in equation 
(5) below: 

Cj E Cj(s) = 1,” exp(-sr)Cj(r)dr (5) 

j = 1,2,3 

giving for equation (1): 

where 

and for equation (2): 

vlC1(0) - - F - ____- 
s 

VlCl = v*c2 + 7 c, 

c2 = i.c’, 

v1C1*(0) \, c * F@ - 1 1 
s 

- peg = v&2* + 7 

(6) 

(7) 

(8) 

where 

z;Z* = ie * 
’ 1. (9) 

When carrying out an experiment with no protein present, it is possible, in principle, to 
evaluate the transfer function, i, in terms of the transformed measured variable, Cz2, 
using equation (6): 

_ _ 
z = C&i 

= SviC*/{v&(o) - C&S + F]}. (IO) 

This result can now be used with equations (8) and (9) to get a parametric representation 
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of the Laplace transform of the isotherm in terms of the Laplace transform of the 
measured variable for the protein-containing case, Cz*. 

01) 

and 

c * = vlG*(o) VICI(O) - G(w + F) 
3 + v2 + F/s) . (12) 

Ps SC2 

Fourier series analysis 

The experimental measurements of C,(t) and C,*(t) (Fig. 2) need to be used to obtain 
the required isotherm. 

0.7 

t 

Flgure2 
Experimentally obtained elution profiles for a phenol 
red solution and a phenol red-BSA mixture, 
monitored spextrophotorhetrically at 269 nm. 
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Let (as in Greenberg [13] and Karstaedt et al.; unpublished results): 

s=cx+iw (13) 

where a > aO, the largest real part of a pole of the Laplace transfer in the complex 
plane. 

Then equation (5) becomes: 

Cj(o + io) = Jrexp(-ar) C,(T) {COS WT - isinor}dr. (14) 

This integral may be approximated as closely as required by choosing a sufficiently large 
time limit (27’) for a given a, because C,(t) + 0 as t -+ 00, i.e. 

Cj(a + io) = Jyexp(-aT)Cj(7) {COS COT - isin wT}d? 
(15) 

j = 1,2,3 
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Defining 

gj(t) = exp(-of) Cj(t) 

NEIL ARTHUR SPARROW et al. 

(16) 

then (since g satisfies the Dirichlet conditions) g is approximated by a Fourier series: 

gj(t) = ajJ2 + i [Ujm COS(l?PlTt/T) + bj&in(mlTtlT)]. (17) 
m=l 

Now let w take on the successive values: 

o = mdT m=O,l m . . .) (18) 

and by evaluating the integral 

Jygj(T)e-io7d’ 

f [Ujm cos(mdT) + bjm sin(mrrG)]}dT 
m=l 

(19) 

which because of the orthogonality of the sin and cos terms reduces to: 

gj(o + imd!‘) = T(Ujm - ibj,,J 

(20) 
j = 1,2,3 

m=l ,- * *, m 

therefore 

ajm = l/T Re[gj(o + imdT)]; (214 

bjm = -l/T Im[gj(o + imdT)]; @lb) 

and 

Ujo = l/T gj(o) 

also, by the Euler-Fourier formulae [14]; 

(214 

Ujm = l/T J yexp( -oT)Cj(r)cos(m&T)dT 

bjm = l/T J yexp(-ar)Cj(7)cos(m&T’)dT 

m = 0,l . . .) m (22a) 

m = 0,l . . .) m. Wb) 

It is now possible to evaluate ati, bh, Use, b*h, from the experimental data of C,(t) 
and C,*(t) by using the appropriate equation (22). 
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By substituting these values for the as and bs in equations (11) and (12), the following 
equations are obtained: 

T(u*~~ - ib*& = 
T(a**m - ib*h) 

(0~ + imr/T) vIT(a2, - i&J {WI(O) 

(23) 
- T{a;?, - ibzm} [VZ(OL + im7rlT) + F]} 

and 

T(u*~,,, - ib*& = vIC*I(O) 
P(IX + im7rlT) 

T(u*~ - ib*& vIC1(0) - T(az, - i&J [VZ(OL + imnlT) + F] - { (24) 
P (a + imp/T) T(az, - i&J 

F + v2 + 
(cx + imalT) 

} m = 1,2, . . . ,w. 

By taking real and imaginary parts of the right-hand sides of each of these equations, in 
which there are only known quantities, it is possible to evaluate Undo, b*lm, Undo, b*& 
m=l . . , 03. 

The ‘values a*10 and a*30 may also be evaluated from the same equation with b*to = 

b*so = 0, provided that cx > 0. Thus all the Fourier series coefficients which are 
required in order to obtain the parametric representation of the isotherm are calculated. 

C*,(t) = exp(cYt) {a*iJ2 + i [Undo cos(mdZJ 
m=l 

+ b*im sin(m&7)]} 

C*,(t) = exp(at) {a*3J2 + i [Undo cos(m7rtlT) 
m=l 

+ b*3m sin(m&T)]} 

(254 

(25b) 

for 0 s t G 2T. 

Analysis of experimental data 
If a few experiments are performed without proteins, with different initial concen- 

trations of ligand, C,‘(O), then it is possible to test the assumption of linearity since, if it 
is valid, all of the normalized curves FC~k(t)lvICIk(0) should be coincident. This is 
shown in Fig. 3a, where it can be seen that linearity is accurately obeyed over a four-fold 
range of initial concentrations. 

Because of the lengthy duration of the experiments (‘7 h), it may not be convenient to 
continue taking measurements until the value of the concentration reaches a negligible 
level. In order to overcome this problem, a value of OL may be chosen that is sufficiently 
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Figure 3 
(a) Verification of the assumption of linearity, as shown by the coincidence of the elution profiles normalized 
by multiplication by F/(v,C,“(O)). Initial phenol red concentrations 0.5 x 10m4 M; 1.0 x 1O-4 M; 1.5 x 10e4 
M. (b) Log-linear plots of the normalized elution profiles. 

large that the tail of the curve will fade rapidly away in order to make the approximation 
in equation (15) valid. This is, however, done only at the expense of also de-emphasizing 
the later experimental points. It was considered that the problem could be approached in 
another way. If the elution profiles are plotted as the logarithm of the absorbance versus 
time (Fig. 3b), it is clear from the linearity that the tail may be fitted by a single 
exponential. By using an exponential to extend the data analytically to infinity, it was 
shown that the correct area under the curve was obtained, viz. (v,C,(O)IF). Thus, the 
curve may be extended exponentially from the final experimental point T’ to some 
arbitrary time 2T, at which stage the value of the tail is negligible. (The error incurred 
may be calculated from the known value of the integral.) 

For experiments in which a protein is present in the sample compartment, an 
equivalent analysis may be performed, but there is no good reason in this case to assume 
an exponential tail. (Indeed, this is most unlikely.) It is the case that the tail does appear 
to be fitted by an exponential, but such extension leads to a slightly incorrect area under 
the curve. For the sake of the mass balance, it is more important to obtain the correct 
area. Hence, it was decided to fit an exponential to the tail, in which constants were used 
to yield the correct total area according to the quantity of ligand originally introduced 
into the dialysis cell. 

Verification of the method 
In order to test the procedure and its accuracy, the analysis was first performed on a 

set of synthetic data, where all the model constants were known. 
The protein-ligand binding isotherms were generated by means of the two-site 

Scatchard binding model: 

C*3 = t nikiC* i/(1 + kiC* 1) (26) 
n=l 
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(where ni is the number of binding sites in each class of binding site, m is the number of 
classes of binding sites, two in the present case, and ki is the corresponding 
protein-ligand association constant for each class of binding site). Values for the binding 
parameters used to generate the isotherms are [15] 

ni = 1, kl = 1.1 x 105; n2 = 6, k2 = 1.2 X 103. 

For the dialysis membrane the model was taken to be that used in a previous paper [ll] 
and the value of the membrane permeation constant used was 1.0 X’ 10-4cm3s-1. 

Elution profiles which simulate non-protein and protein dialysis experiments for a 
phenol red-BSA system were generated by computer, by solving the assumed system 
differential equations using a fourth order Runge-Kutta algorithm over the time interval 
t= 0 to T’ = 2.8 x lo4 s (corresponding to 875 data observations at 32 s intervals). The 
data set was extended over an interval from T’ = 2.8 x 104 to 2T = 1.5 x 10’ s, by means 
of a monoexponential function with values for the parameters chosen to make the 
function continuous with the elution profile and, as mentioned above, to obtain the 
correct area under the curve. 

In order to perform the analysis, a value of OL > 0 (in order to be to the right of a pole 
at zero) has to be chosen. It should not be chosen too large, as this causes loss of accuracy 
by de-emphasizing the later experimental points. A value of one-tenth of the exponential 
constant required to fit the tail of the non-protein case was chosen. Of course, this value 
must be the same for both the protein and non-protein cases. 

Finally, in order to perform the analysis the number of terms to be used in the Fourier 
series has to be chosen, since it is obviously not possible to sum to infinity. Now, because 
all the functions in the system obey the Dirichlet conditions [12], the Fourier coefficients 
will tend to zero for large values of m. However, because of experimental noise, the 
power ( v/am2 + bm2) as a function of m tends to a constant value for large values of m 
(‘the rectangle of noise’). At this point, it is not worth continuing to evaluate more terms 
since only noise is being fitted. Though this limit was approached for fewer terms, a value 
of N = 100 was used for all the work in this paper, to ensure that no true information was 
arbitrarily excluded. 

The computer language used (FORTRAN) could perform complex arithmetic, and 
therefore could establish the real and imaginary parts of equations (11) and (12) without 
algebraic manipulation. 

By using the previous analysis, it is possible to regenerate not only the binding 
isotherms from the computer-generated results but also C,(t), C,*(t), and the total ligand 
concentration in the sample compartment: i.e. 

C,‘(t) = c,*(t) + (pIv1}c3*(f). 

The theoretical curves, as well as the regenerated curves, were produced and 
compared (Fig. 4). Apart from a prominent regular oscillation, the fit of the regenerated 
to the theoretical curve was good. Now, it is well known that when Fourier series are 
fitted to functions with discontinuities, there occur oscillations associated with the Gibbs 
phenomenon [14]. For all three of these curves, there is a jump from zero to the initial 
concentration, thus causing the oscillations in the regenerated Fourier series. 

Lanczos has described a method of u factors to smooth out these oscillations [16] and, 
although this does damp out the oscillations, there remains some overshoot at t = 0, with 
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damped oscillations. Another procedure to eliminate the initial step, and hence these 
oscillations, is that of Krylov [17]. 

It is known that, for a function with a discontinuity at zero, the Fourier coefficients of 
the sine must converge [14], like l/m. By plotting a, vs l/m, the value of the slope for 
large m can be established experimentally, say d. Now, it is well known that: 

d F L sin y = $ (2T - t) Osts2T. 
m=l m 

(27) 

Thus, by calculating this sum to infinity, the equations for Ci, Cl*, Cl’, respectively can 
be rewritten, in the form: 

C(t) = : (a,,, - 6) sin $$ + b, sin @$ + $- (2T - t) (28) 
m=l 

where the Fourier series from equation (27) have been subtracted, term by term, and 
then later added as its analytical equivalent. In essence, an analytical sum to infinity has 
been performed on the slowly convergent part of the function, leaving a remainder term, 
which is more rapidly convergent-summed to N. 

Figures 5a and 5b show the theoretical and regenerated curves after application of the 
Krylov ramp subtraction technique to remove the Gibbs phenomenon, while Fig. 5c 
shows the regenerated binding isotherm compared with the original. It can be seen that 
the technique has worked well and has been able to give a fairly accurate representation 
of all the data using only the output curves, without any detailed model except for the 
assumption of linearity and of the absence of any hold-up in the membrane. 

(a) 
Iat Control 

(b) 
10 - With protein 

O I 2 3 4 
Time (3) x IO4 

Figure 4 
Sample compartment ligand concentration curves. - - -Theoretical curves. -Curves generated by means 
of the transfer function. 
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Figure 5 
Sample compartment hgand concentration curves and 
binding Isotherms after smoothing by the Krylov 
method. - - -Theoretical curves. -Curves 
generated by means of the transfer function. (A) 
Control (no protein); (B) sample compartment ligand 
concentration in the presence of protein; (C) protein- 
ligand binding isotherms. 
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Figure 6a shows a comparison of the phenol red-BSA binding isotherms obtained 
experimentally, using the continuous flow dynamic dialysis method, with isotherms 
generated by equation (26) using values for binding parameters reported by other 
investigators. The isotherm obtained by the continuous-flow dynamic dialysis method is 
a composite of separate dialysis experiments over the concentration ranges listed in 
Table 1. 

The experimental binding isotherms shown in Fig. 6a were obtained using the 
permeation constant method of analysis [ll]. Values for binding parameters, derived 
from the binding isotherm, are given in Table 2. These parameters were obtained by 
fitting the isotherm to a two-site Scatchard model using the SIEPIT least squares 
regression program [19]. Binding parameters recalculated from data reported by other 
investigators are also tabulated. The experimentally determined binding isotherms 
extracted from the same elution profile data sets (initial phenol red concentration 0.11 x 

lo-* M; BSA concentration 5.0 x 10m5 M) by the permeation constant method and by 
the transfer function method are shown for comparison in Fig. 6b (i) and (ii), respectively. 

Table 1 
Ligand concentration ranges covered in individual dialysis experiments to prepare the 
composite binding isotherm 

Experiment number 
Initial ligand concentration 
(mol 1-i) 

Final ligand concentration 
(mol I-‘) 

1 2.33 x 1O-3 7.48 x 1O-4 
2 8.31 x 1O-4 2.74 x 1O-4 
3 2.87 x 1O-4 1.10 x 10-4 
4 1.61 x 1O-4 4.22 x 1O-5 
5 4.20 x 10-s 2.15 x 10-s 

Table 2 
Binding parameters for the phenol red-BSA interactions at 25°C and their approximate standard errors 

Method No. of data points 
k, kz 

ni* litre mol-’ n2* litre mol-’ 

Difference spectroscopy? 12 1 (0.92 + 2.7) x lo5 6 (1.29 f 0.47) x lo3 
Dynamic dialysis$ 38 1 (3.64 f 5.8) x 10s 6 (1.52 + 0.37) x 103 
Dynamic dialysisl 32 1 (0.57 + 1.1) x 10’ 6 (2.05 + 0.42) x lo3 
Continuous-flow 
Dynamic dialysis/l >500 1 (0.56 f 0.08) x 10’ 6 (1.37 + 0.02) x 103 

*Constrained to integer values. 
t Data from Rodkey (151; parameters recalculated, using STEPIT, in order to estimate standard errors. 
*Data from Meyer and Guttman [3] see footnote t. 
8Data from Kanfer [18] see footnote t. 
IlData from Sparrow et al. [ll]; 15 points running smooth used to obtain the derivative. 

Sources of error 
The analysis reported above may be affected by errors of three kinds: random noise in 

the experimental data, systematic error, and numerical error. Random experimental 
noise is, fortunately, automatically smoothed by the process of Fourier analysis which 
necessarily omits the higher-frequency, noise-affected coefficients. 
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The assumption that the tail of the curve from T’ to 2T can be modelled by a single 
fitted exponential will also lead to error, but this is limited to the contribution of the tail 
to the integrations in equations (22). Thus it is important to proceed with data capture to 
a point at which the elution profile is sufficiently close to zero. It is also necessary to 
choose 2T such that the exponential has approached zero sufficiently closely to make the 
approximation in equation (15) valid. 

Systematic error, such as inadequacies in the model, will cause the final isotherm that 
is generated to deviate from experimental isotherms derived by more conventional 
methods; adequate coincidence of such isotherms are demonstrated in Fig. 6b. 

Numerical error will occur if equations (23) and (24) either have denominators which 
tend to zero or if small differences are generated in the numerators. The former is 
unlikely since the denominators, when the expression is separated into real and 
imaginary parts, contain terms of the form (a,* + b,*). These are ‘power’ terms and 
cannot drop to near zero in this experimental situation. Small differences are, however, 
possible. In order to avoid this and so obtain meaningful results, it is necessary that there 
is a significant difference between the elution curves for protein and control. This should 
be confirmed, perhaps by checking that the signal-to-noise ratio (i.e. the standard 
deviation) of the difference signal between control and protein elution profiles is 
sufficiently large relative to the signal-to-noise ratio of the elution profiles themselves. 

Discussion 

It can be seen from Figs 6a and 6b that the phenol red-BSA binding isotherm obtained 
by the continuous-flow dynamic dialysis technique is consistent with the isotherms 
obtained by other techniques. It should be noted that the pair of curves 1 and 2 derive 
from a dynamic dialysis procedure which neglects back-diffusion, while the other group 
all derive from methods which do correct for the presence of ligand on the sink side of 
the diffusion membrane. In addition, the isotherm extracted from the data obtained by 
the system transfer function method of analysis is seen to be comparable with the 
isotherm derived by the permeation constant method of analysis. HoGever, because it is 
unnecessary to discard the data collected over the initial transient phase in the transfer 
function method of analysis, a greater number of data points, over a greater 
concentration range, are obtained for the same data set than by the permeation constant 
method. Thus, for an initial ligand concentration of 0.11 X lo-* M, the upper 
concentration limit of the binding isotherm derived by the transfer function method of 
analysis is 0.76 x 10m3 M compared with an upper concentration limit of 0.60 x 10e3 M 
for the permeation constant method of analysis. There is, however, due to increased 
noise an increased level of uncertainty associated with this additional information. It 
should be noted that the additional points provided by the present transfer function 
method of analysis can represent a considerable portion of the isotherm because, 
although the data discarded during the initial transient phase in the permeation constant 
method represent only a small fraction of the total duration of the dialysis experiment, 
the points on the isotherm are not uniformly distributed in time. Moreover, the ligand 
concentration, and therefore the quantity of ligand bound to the protein, is greatest at 
the start of the dialysis. 

From the point of view of mathematical rigour, the transfer function method is the 
preferred method of data analysis. The information content of each point in the elution 
profile depends on the signal-to-noise ratio. In the elution profile, the signal-to-noise 
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Figure6 

log,, (frw ligand concentration) 
-4.2 
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(a) Comparison of the Bjerrum plots of the phenol red-BSA binding isotherm obtained by the CFDD method 
(and calculated by the original permeation constant method [ll]) with isotherms reported by other 
investigators. (b) Comparison of the binding isotherms obtained by the CFDD method using (i) the permeation 
constant method of analysis [ll] and (ii) the present transfer function method. (1) Binding isotherm based on 
binding parameters of Kanfer [18]; (2) binding isotherm based on binding parameters of Meyer [3] and 
Guttman; (3) binding isotherm obtained by CFDD [ll]; (4) binding isotherm based on binding parameters of 
Rodkey [15]. 

ratio decreases as the signal decreases. The permeation constant analysis evaluates the 
quantities C,*(t) and C,*(t) over the entire dialysis data set on the basis of a single 
average value of the permeation constant, irrespective of the signal-to-noise ratio. In the 
transfer function method of analysis, however, because of the Laplace transformation 
into the frequency domain the noise components of the signal are, in effect, averaged 
over the entire elution profile data set. The curves are smoothed by excluding those 
components which represent the high frequency noise. 
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